

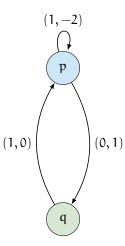
Improved Algorithm for Reachability in d-VASS

Yuxi Fu¹, Qizhe Yang², Yangluo Zheng¹

¹Basics Lab, Shanghai Jiao Tong University ²Shanghai Normal University

July 12, 2024

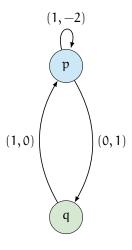
· VASS



VASS = Vector Addition System with States

Finite state machine with transitions labeled by vectors.

VASS

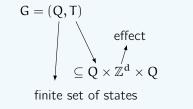


VASS = Vector Addition System with States

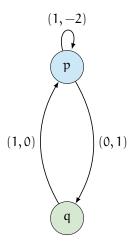
Finite state machine with transitions labeled by vectors.

Definition

Formally, a d-dimensional VASS, or d-VASS for short, is a pair



VASS



VASS = Vector Addition System with States

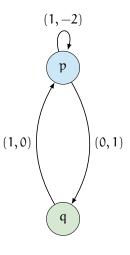
Finite state machine with transitions labeled by vectors.

Definition

Formally, a d-dimensional VASS, or d-VASS for short, is a pair

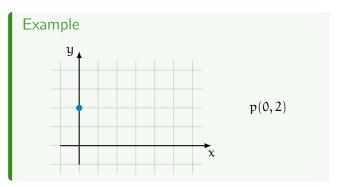
$$G = (Q,T)$$
 effect
$$\subseteq Q \times \mathbb{Z}^d \times Q$$
 finite set of states

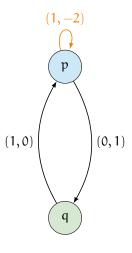
$$VASS = VAS = Petri Net = \cdots$$



Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

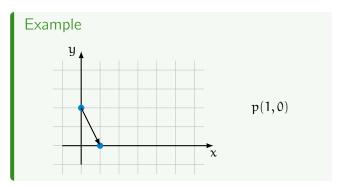
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.

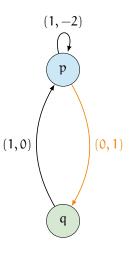




Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

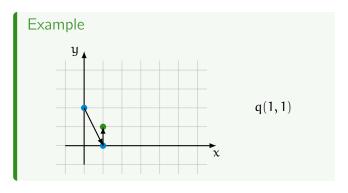
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.

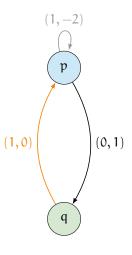




Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

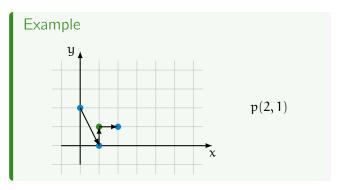
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.

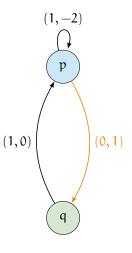




Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

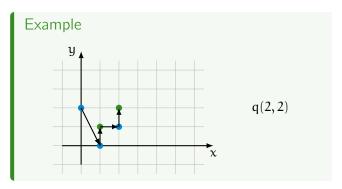
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.

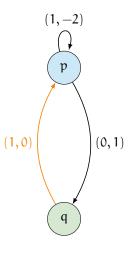




 $\mbox{Configuration: } p(\vec{\nu}) \in Q \times \mathbb{N}^d.$

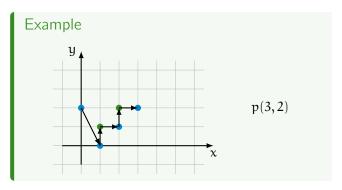
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.

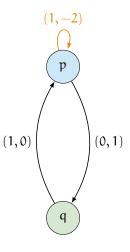




Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

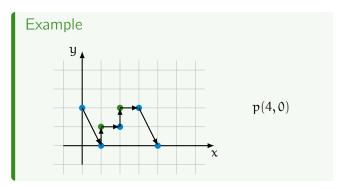
Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.





Configuration: $p(\vec{v}) \in Q \times \mathbb{N}^d$.

Move: $p(\vec{v}) \xrightarrow{(p,\vec{a},q)} q(\vec{v} + \vec{a})$.



VASS Reachability Problem

Input: a VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

VASS Reachability Problem

Input: a VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

Already settled: Ackermann complete.

VASS Reachability Problem

Input: a VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

Already settled: Ackermann complete.

d-VASS Reachability Problem

Input: a d-VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

VASS Reachability Problem

Input: a VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

Already settled: Ackermann complete.

d-VASS Reachability Problem

Input: a d-VASS G and two configurations $p(\vec{x})$, $q(\vec{y})$.

Question: does $p(\vec{x}) \xrightarrow{*} q(\vec{y})$?

Gap not closed between complexity upper and lower bounds.

History (upper bounds)

1969		Introduction of vector addition systems. Karp, Miller. Parallel program schemata.
1977		(Incomplete) decidability proof. Sacerdote, Tenney. The decidability of the reachability problem for vector addition systems.
1981		Decidability proof. Mayr. An algorithm for the general Petri net reachability problem.
1982		Decidability proof, simplified. Kosaraju. <i>Decidability of reachability in vector addition systems.</i>
1992		Decidability proof, refined. Lambert. A structure to decide reachability in Petri nets.
2015		First upper bound: F_{ω^3} (cubic-Ackermann). Leroux, Schmitz. Demystifying Reachability in Vector Addition Systems.
2019		Improved upper bound: F_{ω} (Ackermann) for general problem, F_{d+4} for d-VASS. Leroux, Schmitz. Reachability in Vector Addition Systems is Primitive-Recursive in Fixed Dimension.

History (lower bounds)

1976	EXPSPACE hardness. Lipton. The Reachability Problem Requires Exponential Space.
2019	F ₃ (TOWER) hardness. Czerwinski, Lasota, Lazic, Leroux, Mazowiecki. <i>The Reachability Problem for Petri Nets is Not Elementary.</i>
2021	$F_{\omega}(Ackermann)$ hardness for general problem, F_d -hardness for $6d$ -VASS. Czerwinski, Orlikowski. Reachability in Vector Addition Systems is Ackermann-complete.
2021	$F_{\omega}(\text{Ackermann})$ hardness for general problem, F_d -hardness for $(4d+9)$ -VASS. Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive.
2023	$F_{\omega}(Ackermann)$ hardness for general problem, F_d -hardness for $(2d+3)$ -VASS. Czerwinski, Jecker, Lasota, Leroux, Orlikowski. New Lower Bounds for Reachability in Vector Addition Systems.

Our results

Theorem

[Leroux and Schmitz, 2019]

Reachability for d-VASS is in F_{d+4} .

Theorem

[Ours]

Reachability for d-VASS is in \mathbf{F}_d .

What is F_d ?

Complexity classes defined in [Schmitz. Complexity Hierarchies Beyond Elementary. 2016.]

What is \mathbf{F}_{d} ?

Complexity classes defined in [Schmitz. Complexity Hierarchies Beyond Elementary. 2016.]

Fast-growing Functions $F_0(x) = x + 1$ $F_1(x) = \underbrace{F_0(F_0(\dots(F_0(x))\dots))}_{= 2x + 1}$ $F_2(x) = F_2^{x+1}(x) = 2^x(x+1) - 1$ $F_d(x) = F_{d-1}^{x+1}(x)$ tends to the Ackermannian function

What is \mathbf{F}_{d} ?

Complexity classes defined in [Schmitz. Complexity Hierarchies Beyond Elementary. 2016.]

Fast-growing Functions

$$\begin{split} F_0(x) &= x+1 \\ F_1(x) &= \underbrace{F_0(F_0(\cdots(F_0(x))\cdots))}_{x+1 \text{ times}} = 2x+1 \\ F_2(x) &= F_2^{x+1}(x) = 2^x(x+1)-1 \\ &\vdots \\ F_d(x) &= F_{d-1}^{x+1}(x) \\ &\vdots \\ \text{tends to the Ackermannian function} \end{split}$$

The \mathscr{F}_d Hierarchy

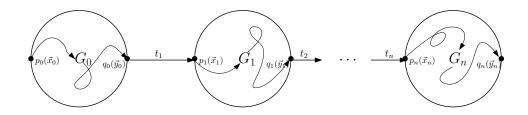
$$\mathscr{F}_d := \bigcup_{c \in \mathbb{N}} \mathsf{FDTime}(\mathsf{F}^c_d(\mathfrak{n}))$$

The **F**_d Hierarchy

$$\mathsf{F}_d \coloneqq \bigcup_{\mathfrak{p} \in \mathscr{F}_{d-1}} \mathsf{DTime}(\mathsf{F}_d(\mathfrak{p}(\mathfrak{n})))$$

E.g., $F_3=$ Tower is already non-elementary. All F_d for $d\in\mathbb{N}$ are primitive recursive.

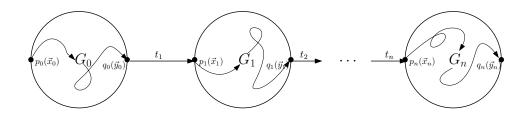
Decomposition Structure



KLM Sequence: a sequence of (generalized) reachability instances linked by transitions.

"generalized": some components in the vectors \vec{x}_i, \vec{y}_i can be missing

Decomposition Structure



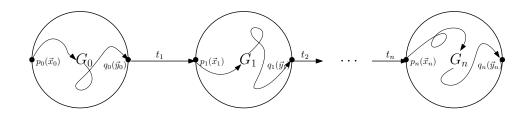
KLM Sequence: a sequence of (generalized) reachability instances linked by transitions.

"generalized": some components in the vectors \vec{x}_i, \vec{y}_i can be missing

Idea

To split a question of the form "is $q(\vec{y})$ reachable from $p(\vec{x})$ in G" into consecutive easier questions.

Decomposition Structure



KLM Sequence: a sequence of (generalized) reachability instances linked by transitions.

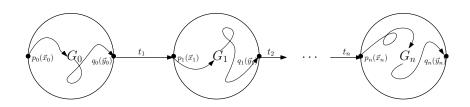
"generalized": some components in the vectors \vec{x}_i, \vec{y}_i can be missing

Idea

To split a question of the form "is $q(\vec{y})$ reachable from $p(\vec{x})$ in G" into consecutive easier questions.

Initially, we start with a single reachability instance: the input instance.

Normal conditions

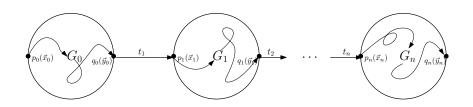


Definition

A KLM sequence is normal if it is

solvable
strongly connected
saturated
unbounded
rigid
pumpable

Normal conditions



Definition

A KLM sequence is normal if it is

solvable
strongly connected
saturated
unbounded
rigid
pumpable

Theorem

[Leroux and Schmitz, 2019]

If a KLM sequence is normal, then there is a run from the very beginning to the very end.

Fact

[Leroux and Schmitz, 2019]

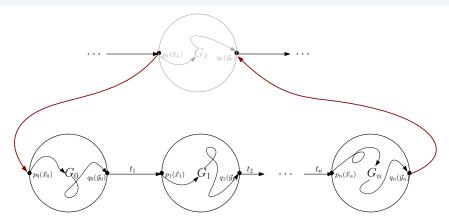
Whether a KLM sequence is normal is decidable in EXPSPACE.

Decomposition

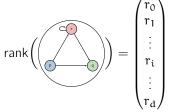
Theorem

[very informal and inaccurate!]

If a KLM sequence ξ is not normal, then one can compute a set Ξ of KLM sequences of smaller ranks, such that each run admitted by ξ is admitted by some sequence in Ξ , and every run admitted by Ξ is admitted by ξ , i.e. reachability witnesses are preserved exactly.



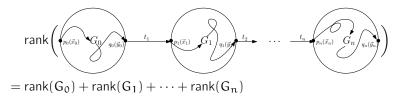
Ranks



where $r_i = \#$ transitions t such that the vector space spanned by the effect of cycles containing t has dimension i

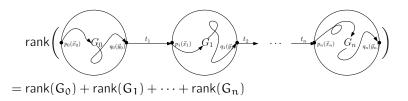
Ranks

where $r_i = \#$ transitions t such that the vector space spanned by the effect of cycles containing t has dimension i



Ranks

where $r_i=\#$ transitions t such that the vector space spanned by the effect of cycles containing t has dimension i



Ranks are ordered lexicographically.

Algorithm

• Start with the initial KLM sequence which is the input instance.

Algorithm

- Start with the initial KLM sequence which is the input instance.
- While the current KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.

Algorithm

- Start with the initial KLM sequence which is the input instance.
- While the current KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Algorithm

- Start with the initial KLM sequence which is the input instance.
- While the current KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Termination: guaranteed by the decrease in ranks.

The KLMST Decomposition Algorithm

Algorithm

- Start with the initial KLM sequence which is the input instance.
- While the current KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Termination: guaranteed by the decrease in ranks.

Complexity: F_{d+4} by [Leroux and Schmitz, 2019], where

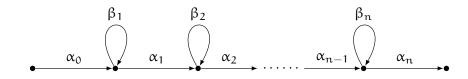
Technical Tool II: Linear Path Schemes

Linear path schemes

A linear path scheme for a VASS G characterize a set of paths in G by a regular expression

$$\alpha_0 \beta_1^+ \alpha_1 \beta_2^+ \alpha_2 \dots \alpha_{n-1} \beta_n^+ \alpha_n$$

where $\alpha_0, \ldots, \alpha_n$ are paths and β_1, \ldots, β_n are cycles in G.

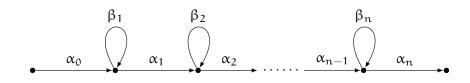


Linear path schemes

A linear path scheme for a VASS G characterize a set of paths in G by a regular expression

$$\alpha_0 \beta_1^+ \alpha_1 \beta_2^+ \alpha_2 \dots \alpha_{n-1} \beta_n^+ \alpha_n$$

where $\alpha_0, \ldots, \alpha_n$ are paths and β_1, \ldots, β_n are cycles in G.



A path π is admitted by this linear path scheme if it can be written as

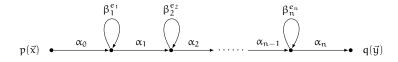
$$\pi = \alpha_0 \ \beta_1^{e_1} \ \alpha_1 \ \beta_2^{e_2} \ \alpha_2 \ \dots \ \alpha_{n-1} \ \beta_n^{e_n} \ \alpha_n$$

where $e_1, \ldots, e_n > 0$.

Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

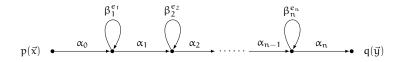
Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

To decide whether there is a run of the form



Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

To decide whether there is a run of the form

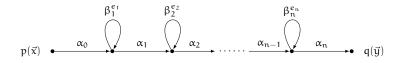


we only need to check if e_1, e_2, \ldots, e_n satisfies the following (linear) constraints:

• the total effect is $\vec{y} - \vec{x}$,

Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

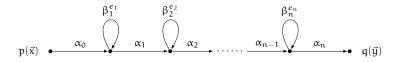
To decide whether there is a run of the form



- the total effect is $\vec{y} \vec{x}$,
- each configuration along each path segment α_i is $\geqslant \vec{0}$,

Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

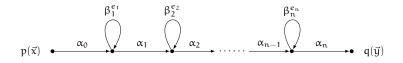
To decide whether there is a run of the form



- the total effect is $\vec{y} \vec{x}$,
- each configuration along each path segment α_i is $\geqslant \vec{0}$,
- each configuration along the first and last lap of each cycle segment β_i is $\geqslant \vec{0}$,

Runs admitted by a linear path scheme are **completely** characterized by a system of linear inequalities.

To decide whether there is a run of the form



- the total effect is $\vec{y} \vec{x}$,
- each configuration along each path segment α_i is $\geqslant \vec{0}$,
- each configuration along the first and last lap of each cycle segment β_i is $\geqslant \vec{0}$,
- each $e_i \geqslant 1$.

Application in 2-VASS

Theorem

Blondin, Englert, Finkel, Göller, Hasse, Lazic, McKenzie, Totzke, 2021]

For any 2-dimensional VASS G, there is a finite set of linear path schemes of length poly(|G|) such that any run in G is admitted by some linear path schemes in this set.

As a corollary, reachability in 2-VASS is shown to be in PSPACE.

Application in 2-VASS

Theorem

[Blondin, Englert, Finkel, Göller, Hasse, Lazic, McKenzie, Totzke, 2021]

For any 2-dimensional VASS G, there is a finite set of linear path schemes of length poly(|G|) such that any run in G is admitted by some linear path schemes in this set.

As a corollary, reachability in 2-VASS is shown to be in PSPACE.

However, the theorem fails already for 3-VASS.

Question: Can we apply the linear path scheme technique to KLMST decomposition?

Geometrically 2-dimensional VASS

Geometrical Dimension of a VASS

Definition

The geometrical dimension of a VASS G is the dimension of the vector space spanned by the effects of all (simple) cycles in G.

Geometrical Dimension of a VASS

Definition

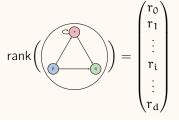
The geometrical dimension of a VASS G is the dimension of the vector space spanned by the effects of all (simple) cycles in G.

Example

gdim
$$(1,0,-1)$$
 $(0,1,1)$ $= 2$

Low rank ⇒ low geometrical dimension

Recall



where $r_i = \#$ transitions t such that the vector space spanned by the effect of cycles containing t has dimension i

Lemma

If G is a strongly connected d-VASS whose rank is (r_0,\ldots,r_d) such that $r_3=r_4=\cdots=r_d=0$, then $\text{gdim}(G)\leqslant 2$, i.e., G is a geometrically 2-dimenisonal VASS.

Low rank ⇒ low geometrical dimension

Recall

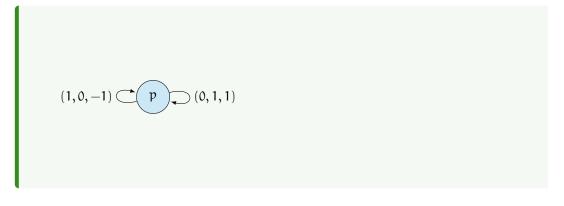
where $r_i = \#$ transitions t such that the vector space spanned by the effect of cycles containing t has dimension i

Lemma

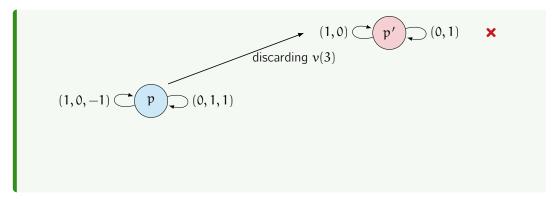
If G is a strongly connected d-VASS whose rank is (r_0,\ldots,r_d) such that $r_3=r_4=\cdots=r_d=0$, then $\text{gdim}(G)\leqslant 2$, i.e., G is a geometrically 2-dimenisonal VASS.

Since the ranks of KLM sequences keep dropping during the KLMST decomposition, one will eventually obtain geometrically 2-dimenisonal VASSes.

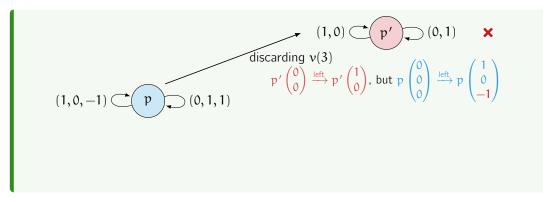
Geometrically 2-VASS ≈ 2-VASS



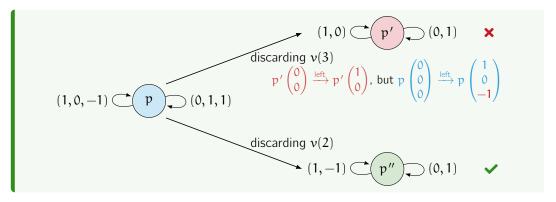
Geometrically 2-VASS ≈ 2-VASS



Geometrically 2-VASS \approx 2-VASS

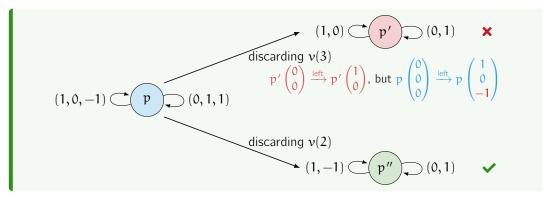


Geometrically 2-VASS ≈ 2-VASS



Geometrically 2-VASS ≈ 2-VASS

Idea: project a geometrically 2-VASS onto 2 coordinates to get a 2-VASS.



Every run from p''(0,0) can be safely project back to a valid run from p(0,0,0):

$$\forall \ \vec{v} \in \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}, \quad \vec{v}(1) \geqslant 0 \land \vec{v}(3) \geqslant 0 \implies \vec{v} \geqslant \vec{0}$$

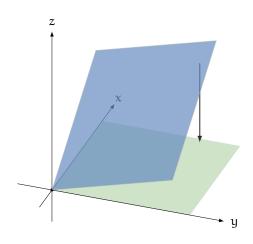
Sign-reflecting projection

Lemma

Every (2-dimensional) plane (satisfying some regular conditions) in \mathbb{Q}^d can be projected onto a coordinate plane such that

projected vector $\geqslant \vec{0} \iff$ original vector $\geqslant \vec{0}$

Such a projection is called a sign-reflecting projection.



Linear path schemes for geometrically 2-VASS

Theorem

For any geometrically 2-dimensional d-VASS G, there is a finite set of linear path schemes of length poly(|G|) such that any run in G is admitted by some linear path schemes in it.

$$(1,0,-1) \bigcirc p \bigcirc (0,1,1) \longrightarrow \alpha_0 \bigcirc \alpha_1 \bigcirc \alpha_2 \bigcirc \alpha_{n-1} \bigcirc \alpha_n \bigcirc$$

Replace every geometrically 2-VASS in a KLM sequence by linear path schemes.

Linear KLM Sequence

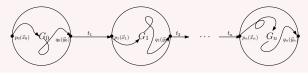
KLM sequence

A sequence of generalized reachability instances linked by transitions:

Linear KLM Sequence

KLM sequence

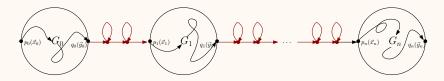
A sequence of generalized reachability instances linked by transitions:



L

Linear KLM sequence

A sequence of generalized reachability instances linked by linear path schemes:



New normal conditions

Definition

A linear KLM sequence is *pure* if every geometrically 2-dimensional VASS in it is trivial (contains only a single state).

New normal conditions

Definition

A linear KLM sequence is *pure* if every geometrically 2-dimensional VASS in it is trivial (contains only a single state).

Definition

A linear KLM sequence is normal if it is

solvable
strongly connected
saturated
unbounded
rigid
pumpable
pure

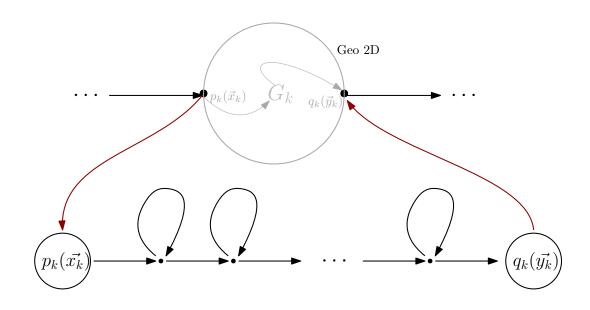
Theorem

If a linear KLM sequence is normal, then there is a run from the very beginning to the very end.

Fact

Whether a linear KLM sequence is normal is decidable in EXPSPACE.

New decomposition operation



New ranking function

We can now ignore the lower 3 components r_0, r_1, r_2 in the ranking function:

$$\overline{\text{rank}}\left(\begin{array}{c} r_3 \\ r_4 \\ \vdots \\ r_i \\ \vdots \\ r_d \end{array}\right) := \begin{pmatrix} r_3 \\ r_4 \\ \vdots \\ r_i \\ \vdots \\ r_d \end{pmatrix} \in \mathbb{N}^{d-2} \qquad \text{where } r_i = \# \text{ transitions t} \\ \text{such that the vector space spanned by the effect} \\ \text{of cycles containing t has dimension i} \\ \vdots$$

New ranking function

We can now ignore the lower 3 components r_0, r_1, r_2 in the ranking function:

$$\overline{\text{rank}} \left(\begin{array}{c} r_3 \\ r_4 \\ \vdots \\ r_i \\ \vdots \\ r_4 \end{array} \right) := \begin{pmatrix} r_3 \\ r_4 \\ \vdots \\ r_i \\ \vdots \\ r_4 \end{pmatrix} \in \mathbb{N}^{d-2} \qquad \text{where } r_i = \# \text{ transitions } t \\ \text{such that the vector space spanned by the effect} \\ \text{of cycles containing } t \text{ has dimension } i$$

Still guarantee that rank drops after each decomposition step.

Modified KLMST Decomposition Algorithm

Algorithm (same as before)

- Start with the initial linear KLM sequence which is the input instance.
- While the current linear KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Modified KLMST Decomposition Algorithm

Algorithm (same as before)

- Start with the initial linear KLM sequence which is the input instance.
- While the current linear KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Complexity

$$d-2 \leftarrow$$
 length of new ranking function

$$F_{d+1}$$
 where $d+1 = +$

 \longrightarrow elementary (< F_3) blow up in each decomposition step

Modified KLMST Decomposition Algorithm

Algorithm (same as before)

- Start with the initial linear KLM sequence which is the input instance.
- While the current linear KLM sequence is not normal, perform a decomposition to it and continue with any resulting sequence chosen non-deterministically.
- As long as one non-deterministic branch ends up with a normal sequence, we report "REACHABLE".

Complexity, with careful analysis on fast-growing functions

$$d-2 \leftarrow$$
 length of new ranking function

$$F_d$$
 where $d = +$

 \leftarrow elementary ($< F_2^c$) blow up in each decomposition step

Theorem

Reachability for d-VASS is in \mathbf{F}_{d} .

Theorem

Reachability for d-VASS is in $\textbf{F}_{d}.$

• We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.

Theorem

Reachability for d-VASS is in \mathbf{F}_d .

- We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.
 - The concept of geometrical dimension for a VASS is introduced.

Theorem

Reachability for d-VASS is in \mathbf{F}_d .

- We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.
 - The concept of geometrical dimension for a VASS is introduced.
 - The technique of "sign-reflecting projection" is developed in order to generalize the linear path scheme characterization to geometrically 2-dimensional VASSes.

Theorem

Reachability for d-VASS is in \mathbf{F}_d .

- We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.
 - The concept of geometrical dimension for a VASS is introduced.
 - The technique of "sign-reflecting projection" is developed in order to generalize the linear path scheme characterization to geometrically 2-dimensional VASSes.
 - The notion of "linear KLM sequences" is introduced to plug linear path schemes into the KLMST decomposition framework.

Theorem

Reachability for d-VASS is in $\textbf{F}_{d}.$

- We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.
 - The concept of geometrical dimension for a VASS is introduced.
 - The technique of "sign-reflecting projection" is developed in order to generalize the linear path scheme characterization to geometrically 2-dimensional VASSes.
 - The notion of "linear KLM sequences" is introduced to plug linear path schemes into the KLMST decomposition framework.
- By a careful analysis of the properties of fast-growing functions, we further improve the complexity bound to $\mathbf{F}_{\mathbf{d}}$.

Theorem

Reachability for d-VASS is in \mathbf{F}_d .

- We combine the KLMST algorithm for arbitrary dimensional VASS reachability with linear path schemes for 2-dimensional VASS reachability.
 - The concept of geometrical dimension for a VASS is introduced.
 - The technique of "sign-reflecting projection" is developed in order to generalize the linear path scheme characterization to geometrically 2-dimensional VASSes.
 - The notion of "linear KLM sequences" is introduced to plug linear path schemes into the KLMST decomposition framework.
- By a careful analysis of the properties of fast-growing functions, we further improve the complexity bound to F_d.

Improved Algorithm for Reachability in d-VASS

Yuxi Fu¹, Qizhe Yang², Yangluo Zheng¹

¹Basics Lab, Shanghai Jiao Tong University ²Shanghai Normal University

July 12, 2024

